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In this paper, a high-order Boussinesq model is used to conduct a systematic numerical
study of crescent (or horseshoe) water wave patterns in a tank, arising from the
instability of steep deep-water waves to three-dimensional disturbances. The most
unstable phase-locked (L2) crescent patterns are investigated, and comparisons with
experimental measurements confirm the quantitative accuracy of the model. The
unstable growth rate is also investigated, as are the effects of variable nonlinearity.
The dominant physical mechanism is clearly demonstrated (through time and space
series analysis) to be the established quintet resonant interaction, involving the
primary wave with a pair of symmetric satellites. A numerical investigation into
oscillating crescent patterns is also included, and a detailed account of the complicated
oscillation cycle is presented. These patterns are shown to arise from quintet resonant
interactions involving the primary wave with two unsymmetric satellite pairs. Pre-
existing methods for analysing the stability of steep deep-water plane waves subject
to three-dimensional perturbations are extended to provide accurate quantitative
estimates for the oscillation period. A possible explanation for their selection in
experiments is also provided. Finally, we use the model to conduct a series of
experiments involving competition between various unstable modes. The results
generally show that multiple instabilities can grow simultaneously, provided that
they are of roughly equivalent strength. Results using random perturbations also
match observations in physical experiments both in the form (i.e. two- or three-
dimensional) and the location of the initial instability. The computational results
are the first examples of highly nonlinear (to the breaking point) deep-water wave
modeling in two horizontal dimensions with a Boussinesq model. The efficiency of
the model has allowed for a quantitative study of these phenomena at significantly
larger spatial and temporal scales than have been demonstrated previously, providing
new insight into the complicated physical processes involved.

1. Introduction
This work presents a numerical study of the fascinating phenomenon of ‘crescent’

or ‘horseshoe’ water wave patterns, which occur readily on the sea surface, e.g. from
the action of a fresh wind (examples in nature can be seen in the photographs of
Shrira, Badulin & Kharif 1996). Such patterns have been observed experimentally in
wave tanks in the absence of wind in Melville (1982), Su (1982) and Su et al. (1982),
as well as in its presence in Kusaba & Mitsuyasu (1986) and Collard & Caulliez
(1999). As noted in Annenkov & Shrira (1999), the patterns are very important in
ocean science, since they modify the airflow above the surface and thus affect the
air–sea momentum transfer, while also changing in a specific way radar scattering
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from the sea surface (Shrira, Badulin & Voronovich 2000). Furthermore, conceptually
new models for statistically describing wind-wave field dynamics become necessary in
their presence (Shrira et al. 1996). Such patterns are of additional interest in nonlinear
science (Annenkov & Shrira 1999). They are also important in engineering, as they
are part of the natural evolution of steep deep-water wavetrains, which are commonly
used as design waves for ships and other offshore structures.

The inception mechanism is generally acknowledged to be the class II (three-
dimensional) instability of McLean (1982) (see also McLean et al. 1981), who
numerically analysed the stability of steep deep-water wavetrains subject to periodic
disturbances. The dominant physical processes have also been confirmed as quintet
resonant interactions using the qualitative model of Shrira et al. (1996), based on a
modified Zakharov equation. An investigation using the model of Dommermuth &
Yue (1987) can also be found in Skandrani (1997). Additional qualitative studies into
the long-term sporadic nature of crescent waves can be found in Annenkov & Shrira
(1999, 2001). While the two-dimensional (Benjamin & Feir 1967), class I instability
is well understood, quantitative investigations into the three-dimensional class II
instability are rare. This is probably a consequence of the high computational costs
associated with the three-dimensional nature of the patterns in combination with the
high nonlinearity at which they occur. Numerical simulations with a boundary-element
model (Xue et al. 2001) have, however, demonstrated quantitatively accurate crescent
forms, arising naturally from the nonlinear evolution of a perturbed plane incident
wave. This ground-breaking investigation is limited to relatively small domains and
short time scales, making detailed investigations into the physical processes difficult.

Largely inspired by this work, the present paper contains a more extensive fully
nonlinear numerical study of the class II instabilities leading to crescent wave patterns
on the free surface. We use a numerical model based on the fully nonlinear and highly
dispersive Boussinesq formulation of Madsen, Bingham & Liu (2002) and Madsen,
Bingham & Schäffer (2003). We consider significantly larger spatial and temporal
scales than in Xue et al. (2001), paying particular attention to the complicated physical
processes involved in each of the simulations presented. First, we investigate the most
common phase-locked L2 patterns (as denoted in Su 1982; Su et al. 1982). The model
is verified both qualitatively and quantitatively through comparison with experimental
measurements. Detailed investigations into the unstable growth rate, the effects of
nonlinearity, as well as the physical processes involved during the crescent wave
evolution to breaking are also provided. Secondly, we present a detailed numerical
investigation into the more recently observed oscillating crescent wave patterns.
Through direct numerical simulation we obtain excellent qualitative and quantitative
agreement with the oscillating forms observed by Collard & Caulliez (1999), while
also demonstrating distinct L3 and L4 crescent patterns noted in Su et al. (1982) and
Su (1982). Furthermore, the stability analysis of McLean (1982) is extended, resulting
in a quantitative explanation for each of the oscillating cases considered. A possible
explanation for their selection in the experiments is also provided. Finally, we present
a series of numerical experiments involving the competition of various unstable
modes during their initial growth to the breaking point. These include competition
between isolated symmetric (phase-locked) and unsymmetric (oscillating) class II
modes, between isolated class I and II modes, as well as with random (white noise)
disturbances.

The remainder of the paper is organized as follows. The Boussinesq formulation and
its numerical solution are outlined in § 2, with § 3 describing the periodic perturbation
of steady plane waves used to generate the crescent patterns. The dominant (L2)
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phase-locked crescent patterns are investigated both qualitatively and quantitatively
in § 4. The different, but related oscillating patterns are investigated in § 5. A series
of numerical experiments involving the competition of various unstable modes is
presented in § 6. The issue of computational efficiency is addressed in § 7. Finally,
conclusions are drawn in § 8.

2. The Boussinesq model
In this section, we provide a review of the Boussinesq formulation derived by

Madsen et al. (2002, 2003). Consider the flow of an incompressible, inviscid fluid
with a free surface. A Cartesian coordinate system is adopted, with the x- and y-axis
located on the still-water plane, and with the z-axis pointing vertically upwards. The
fluid domain is bounded by the sea bed at z = −h(x), with x = 〈x, y〉, and the free
surface at z = η(x, t), where t is time. It is computationally convenient to express
the free-surface conditions in terms of velocity variables at the free surface (see e.g.
Zakharov 1968; Madsen et al. 2002, 2003). This leads to the following expressions for
the kinematic and dynamic free-surface conditions

∂η

∂t
= w̃ (1 + ∇η · ∇η) − Ũ · ∇η, (2.1)

∂Ũ
∂t

= −g∇η − ∇
(

Ũ · Ũ
2

− w̃2

2
(1 + ∇η · ∇η)

)
, (2.2)

where

Ũ = 〈Ũ , Ṽ 〉 = ũ + w̃∇η. (2.3)

Here, ũ = 〈ũ, ṽ〉 and w̃ are the horizontal and vertical velocities directly on the free
surface, g =9.81 m s−2 is the acceleration due to gravity, and ∇ = 〈∂/∂x, ∂/∂y〉 is the

horizontal gradient operator. Evolving η and Ũ forward in time requires a means
of computing the associated w̃, subject to the Laplace equation and the kinematic
bottom condition

w + ∇h · u = 0, z = −h(x). (2.4)

For this purpose, the Boussinesq method derived by Madsen et al. (2002, 2003) is
adopted (see also Madsen & Agnon 2003). This method applies a truncated, Padé-
enhanced Taylor series expansion of the velocity potential about an arbitrary level
z = ẑ in the fluid. In addition, the vertical component of velocity at this level is retained
as an unknown, leading to an extremely accurate method (applicable to kh ≈ 25 for
surface quantities and kh ≈ 12 for vertical velocity distributions). Thus, the vertical
distribution of fluid velocity is approximated by

u(x, z, t) = (1 − α2∇2 + α4∇4)û∗(x, t) + ((z − ẑ)∇ − β3∇3 + β5∇5)ŵ∗(x, t), (2.5)

w(x, z, t) = (1 − α2∇2 + α4∇4)ŵ∗(x, t) − ((z − ẑ)∇ − β3∇3 + β5∇5)û∗(x, t), (2.6)

where

α2 =
(z − ẑ)2

2
− ẑ2

18
, α4 =

(z − ẑ)4

24
− ẑ2(z − ẑ)2

36
+

ẑ4

504
,

β3 =
(z − ẑ)3

6
− ẑ2(z − ẑ)

18
, β5 =

(z − ẑ)5

120
− ẑ2(z − ẑ)3

108
+

ẑ4(z − ẑ)

504
.


 (2.7)
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In (2.5) and (2.6), the quantities û∗ and ŵ∗ are pseudo-velocity variables which have
been introduced to allow Padé enhancement of the Taylor series operators. Optimal
velocity distributions are obtained near ẑ = −h/2, and we adopt this value throughout.

Inserting (2.5) and (2.6) into (2.4) and setting ∇h= 0 gives the following expression
of the kinematic bottom condition(

1 − 4
9
γ 2∇2 + 1

63
γ 4∇4

)
ŵ∗ +

(
γ ∇ − 1

9
γ 3∇3 + 1

945
γ 5∇5

)
û∗ = 0, (2.8)

where γ = (h + ẑ). It is straightforward to include the variable bottom terms, as
in Madsen et al. (2002, 2003), however, since they are not used in this work, the
presentation will be simplified to a flat bottom. Combining (2.8) with (2.5) applied at
z = η, while also invoking (2.3) gives a system of partial differential equations (PDEs)
that can be solved for û∗ and ŵ∗ in terms of Ũ and η. Fuhrman & Bingham (2004)
have shown that under the additional assumption of potential (irrotational) flow such
that

∂u

∂y
− ∂v

∂x
= 0, (2.9)

the system simplifies significantly, and we solve this irrotational form here. Note that
(2.9) is a single component of the vorticity vector, and that the other elements
(involving z-derivatives) have already been eliminated via the expansion of the
velocity potential in the z-direction. The resulting discrete linear system is hereinafter
referred to as Ax = b. The matrix A is generally ill-conditioned, and a number of
preconditioning strategies designed to enhance the convergence of iterative solutions
for this specific problem can be found in Fuhrman & Bingham (2004). Having solved
for the pseudo-velocity variables û∗ and ŵ∗, w̃ is computed from (2.6) applied at
z = η, which closes the problem.

This system of PDEs is solved numerically using 37-point finite-difference
approximations (as described in Fuhrman & Bingham 2004). Combined Dirichlet
and Neumann boundary conditions are used to create closed boundaries on a
rectangular domain. These conditions are imposed simply by reflecting the finite-
difference coefficients evenly for Neumann boundary conditions and oddly for
Dirichlet boundary conditions. The classical fourth-order four-stage explicit Runge–
Kutta method is used for the time integration. Linear systems of the form Ax = b are
solved using an unrestarted GMRES (Saad & Schultz 1986) algorithm preconditioned
with the matrix-free Fourier space preconditioner described in Fuhrman & Bingham
(2004), which is extremely efficient for solving flat-bottom problems. All iterative
solutions use a relative residual error tolerance r = ‖b − Ax‖2/‖b‖2 of 10−6. A
relaxation zone consisting of a single wavelength is used for the generation of waves
at the left-hand boundary (as discussed in Madsen et al. 2002), with x =0 defined
as the end of this wavemaker region. Similarly, a relaxation zone consisting of 100
points is applied at the right-hand boundary to prevent reflection from the outgoing
wave field.

3. Crescent wave generation
Crescent waves are generated in this work by superimposing the following three-

dimensional perturbations

η′ =
εH

2
sin(kxx − ω′t + β) cos(kyy), (3.1)
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Ũ
′
= ũ′ + w̃′∇η, (3.2)

where

ũ′ =
ε
√

gHkx

2
(
k2

x + k2
y

)1/4
sin(kxx − ω′t + β) cos(kyy) exp

(√
k2

x + k2
yη

)
, (3.3)

ṽ′ =
ε
√

gHky

2
(
k2

x + k2
y

)1/4
cos(kxx − ω′t + β) sin(kyy) exp

(√
k2

x + k2
yη

)
, (3.4)

w̃′ = −
ε
√

gH

2

(
k2

x + k2
y

)1/4
cos(kxx − ω′t + β) cos(kyy) exp

(√
k2

x + k2
yη

)
, (3.5)

over a streamfunction solution (Fenton 1988) for a plane wave travelling in the +x-
direction, having a peak at x =0 at t = 0. For the streamfunction solution, we set
Stokes’ drift (or mean fluid transport) velocity to cs = 0, to match the conditions of a
closed flume. This plane incident wave has wavenumber k0 and angular frequency ω0,
with celerity c = ω0/k0. In the above, a prime superscript corresponds to a perturbation

of the previously defined base variables, with Ũ
′
= 〈Ũ ′, Ṽ ′〉 and ũ′ = 〈ũ′, ṽ′〉. The values

〈kx, ky〉 are the wavenumbers of the three-dimensional perturbation. The perturbations
correspond to two superimposed travelling components with equal kx and opposite ky

(resulting in a stationary standing wave structure in the y-direction). Unless otherwise
noted, the generated perturbation is assumed to be bound to the unperturbed wave,
having angular frequency

ω′ =
kx

k0

ω0. (3.6)

This satisfies the condition that the wavemaker region is repeated every (kx/k0 − 1)−1

basic periods.
This method of generation has been inspired by Xue et al. (2001), who used

similar perturbations of the free surface and velocity potential over an exact plane
Stokes wave in a boundary-element model. Their simulations used doubly periodic
boundary conditions, thus the perturbations were applied only as initial conditions.
Equations (3.1)–(3.5) generalize this idea to our particular time-stepping variables
and time-variant wavemaker. In all simulations, the initial conditions are set to be
this perturbed incident wave across the entire computational domain. Xue et al.
(2001) found that the phase shift β had no significant effect on the overall crescent
development. We have confirmed this finding (provided that ε is sufficiently small),
and throughout this paper we set β = 0.

4. Phase-locked crescent patterns
4.1. Model discretizations

We begin the study of crescent waves by generating the common phase-locked (L2)
patterns observed by Melville (1982), Su (1982), Su et al. (1982), Collard & Caulliez
(1999), and others. The base incident wave throughout this paper corresponds to a
streamfunction solution with k0 = 1 m−1 (i.e. with wavelength L =2π/k0 = 2π m). The
spatial discretization in the x-direction is taken to be �x = L/40 = 0.1571 m. For the
water depth we use h = L = 2π m, giving an incident wave having k0h = 2π, i.e. well
beyond the practical deep-water limit. The resulting discretizations for a number of
nonlinearities used in this paper are given in table 1. Each case listed corresponds
to the most unstable transversal class II mode according to McLean (1982) for the
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H [m] H/L T [s] ω0 [s−1] �t [s] ky [m−1] �y [m]

0.4021 0.064 1.972 3.186 0.04930 1.54 0.1275
0.5969 0.095 1.931 3.254 0.04828 1.33 0.1476
0.6032 0.096 1.929 3.257 0.04824 1.32 0.1488
0.6600 0.105 1.914 3.283 0.04786 1.23 0.1596
0.6974 0.111 1.903 3.302 0.04759 1.15 0.1707
0.7980 0.127 1.873 3.355 0.04682 0.79 0.2485
0.8231 0.131 1.865 3.369 0.04663 0.65 0.3021

Table 1. Discretizations used for crescent wave simulations with variable nonlinearity.

respective nonlinearities, and discretizations use �t = T/40 (where T is the basic
period) and �y = Ly/32. All simulations for a given nonlinearity throughout this
paper use the parameters from table 1. We stress that each of the discretizations
satisfy linear stability criteria (see the analysis of Fuhrman et al. 2004), with �t

small enough to avoid potential dissipative effects from the time-stepping scheme.
Throughout § 4, kx = 1.5k0 is used for the perturbation, with ω′ =1.5ω0.

4.2. The effects of smoothing filters on the growth rate

Crescent waves are a highly nonlinear phenomena, and though the discretizations
used are linearly stable, some form of dissipative interface is still generally necessary
to maintain numerical stability. The resulting numerical instabilities (usually occurring
as sawteeth at the wave crests) are due to the nonlinear terms, which tend to shift some
eigenvalues of the discrete Jacobian matrix to the right half of the complex plane,
as demonstrated locally in the numerical stability analysis of Fuhrman et al. (2004).
There it is also shown that the system can be stabilized through the addition of rela-
tively minor amounts of dissipation. Throughout this work, we apply Savitzky &
Golay (1964) smoothing filters (see also Press et al. 1992) for this purpose, which
have been used successfully in a number of other water wave studies (see e.g. Xue
et al. 2001; Madsen et al. 2002; Fuhrman & Bingham 2004).

Although their use is commonplace, investigations into the relative effects of such
smoothing filters are rarely presented. Our experience has shown, however, that it is
important to recognize these effects, as they can have a profound influence on the
solution, particularly on any higher harmonics which inevitably become important
in nonlinear simulations. Here, we present one such investigation on the effects on
the growth rate of the instability, ultimately leading to crescent wave formation. We
consider waves with steepness H/L =0.105 on a 513 × 17 grid, with ε = 0.16. Because
the crescent patterns are symmetric about their centreline, it is only necessary to
include half of a crescent width in the computational domain. Following Longuet-
Higgins & Cokelet (1978) and Xue et al. (2001), we present results in the form of a
growth curve, where a root-mean-square growth rate R(t) is defined as

R(t) =




∫ ∫
η′(x, y, t)2 dx dy∫ ∫
η′(x, y, 0)2 dx dy




1/2

. (4.1)

We consider the use of filters with polynomial order two, four, six and eight; having
13, 37, 57 and 81 grid points, respectively (note that the second-order filter has
a diamond-shaped stencil, while the others have an octagon-shaped stencil). In all
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Figure 1. Growth rate R(t) of the initial disturbance for simulations using smoothing filters
with polynomial order ranging from two to eight. Also shown is the theoretical curve from
the linear stability analysis of McLean (1982), given by exp(0.0316

√
gk0t).

simulations, the filter is applied at every time step. Fourier analysis of the various
filters has shown that the higher-order smoothing filters (order greater than two) have
a much less pronounced effect on high-frequency modes (discretized roughly with 10
or fewer grid points per wavelength), thus they provide the cleanest evolution based
solely on the system of nonlinear PDEs. For each test, a domain covering half a
crescent width in y (17 grid points) and two full incident wavelengths in x (81 grid
points) is used for the determination of R(t), starting at x = 7L. Values for η′ are
obtained by subtracting the computed values for η in each simulation from those for
a similar simulation using unperturbed streamfunction incident waves.

The resulting growth curves are presented in figure 1 for the first 7T , as is the
theoretical curve based on the linear stability analysis of McLean (1982). Xue et al.
(2001) present a similar growth curve from a simulation with the same nonlinearity
and ε using a second-order 13-point filter (applied intermittently), which matches
the theoretical curve very well. Figure 1 confirms their finding, demonstrating an
excellent match for the first 4T . Deviations occur at later stages of growth, however.
A comparison of the various smoothing filters clearly shows that the second-order
smoothing filter hampers the long-term growth of the instability. This can be remedied
to some degree by applying the filter intermittently, e.g. at every other time step,
however, our experience has shown that the use of higher-order filters results in less
interference. As demonstrated by the simulations with the higher-order filters, when
the fully nonlinear evolution of these patterns is uninhibited (or nearly so), we obtain
an accelerated growth rate for t � 4T , which significantly exceeds that predicted by the
linear analysis. There is no fundamental reason to expect the fully nonlinear growth
to follow precisely the theoretical linear curve after the onset of the instability, as the
growth itself is due to nonlinear interactions. The sudden appearance of these patterns
as described in physical experiments supports this contention. Such an acceleration is
even stated in Su et al. (1982), though it is doubtful that this observation is based on
any quantitative information. Based on our results, we consider such an acceleration
of the growth likely in the fully nonlinear evolution of these patterns. The results of
all the filters with polynomial order four or higher are reasonably similar, and have a
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(a)

(b)

Figure 2. Computed free surfaces (to scale) for L2 crescent waves with H/L = 0.105 for
(a) ε = 0.05 at t = 11.45T , and (b) ε = 0.16 at t = 7.45T .

much less pronounced influence on the growth rate than does the second-order filter.
We therefore adopt the fourth-order filter for the remainder of this section, unless
otherwise noted. A more complete investigation of the physical processes can be
found in § 4.5, where we investigate the growth into a developed crescent wave field.

4.3. Characteristics of the L2 crescent patterns

In this section, the characteristics of the phase-locked L2 crescent pattern are
investigated. All results again use H/L =0.105 with the fourth-order smoothing
filter applied at every time step. Figure 2 shows computed surface elevations from
simulations using ε = 0.05 and 0.16 near their final state (i.e. t = 11.45T and 7.45T ,
respectively). Multiple widths of the computed free surface are obtained throughout
simply by repeatedly reflecting the results over the y-axis. The perturbed incident
waves develop very rapidly into crescent-shaped patterns, particularly with ε =0.16.
The main effect of smaller ε is simply to slow the crescent growth (similar findings are
discussed in Xue et al. 2001). Other differences are also apparent, however. Notably,
the crescents with ε =0.16 develop a much flatter face than do those with ε =0.05.
Slightly after the states shown in figure 2, the waves become extremely steep, and
the simulations break down, almost certainly because of wave breaking. This process
is consistent with the observations of Su et al. (1982), who repeatedly refer to the
crescent patterns as ‘spilling breakers’. Throughout this work these computational
breakdowns are characterized by a significant increase in the number of iterations
required for solutions of Ax = b, and simulations are stopped after 200 iterations
are reached without convergence. Figure 3 also shows a smaller portion of the final
L2 pattern in more detail for the case with ε = 0.05. From these figures, many of
the distinguishable features described by Su et al. (1982) and Su (1982) can be seen
clearly. The waves have noticeable front–back asymmetry – with the steepest part of
the wave occurring on the front face, the crests are shifted by half the width of the
crescents on successive rows (i.e. the L2 pattern), deep troughs appear in front of the
crescent face, and flattened troughs are evident directly behind the crests.

Figure 4 shows contour plots at two locations from the simulation with ε =0.16.
The flattened troughs behind each crescent, and the deep troughs in front of each
crescent face are again very apparent. Figure 4(a) demonstrates some additional
features – namely a steepening of the crescent ‘shoulders’, and a rising ‘delta’ region
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Figure 3. Computed free surface (to scale) for L2 crescent waves with H/L = 0.105 and
ε = 0.05 at t = 11.45T .
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Figure 4. Contour plots from simulations with H/L = 0.105 and ε = 0.16 at t = 7.45T
beginning at (a) x = 4.125L and (b) x = 8.125L. Note that in (b) the contour interval varies
for η > 0.2 m (it is constant between each labelled contour).

in front of the crescent face. Similar features were also observed in the simulations
of Xue et al. (2001), just prior to breaking, and this figure compares qualitatively
quite well with their figure 12. These features have disappeared in the state shown in
figure 4(b), however, with the steepest part of the wave occurring along the crescent
centre. This is consistent with the description of Su et al. (1982), who clearly report
spilling breakers over the front (central) face of the wave. Contour plots from the
simulation with ε = 0.05 are similar to figure 4(b), again having a less flattened face,
with the steepest part of the wave at the centre.

Having established that the model results are qualitatively similar to those observed
in physical experiments and in previous computations, we now attempt to validate the
model in a more quantitative manner. As noted in Shrira et al. (1996), despite their
seemingly common character and easiness of observation, quantitative experimental
information available for such patterns is rather meager. Su (1982), however, does give
some characteristic ratios for a typical L2 crescent wave generated using an incident
wave of this nonlinearity. Note that there is seemingly a mistake in the definition
for h12 in Su (1982, figure 12). We adopt the measures used in Su et al. (1982) and
Xue et al. (2001) for comparison here, which are shown in figure 5(a) along y = Ly/2.
Also shown in figure 5(b) is the free surface along y = Ly/4, which is qualitatively
similar in form to a plane Stokes wave and compares well with similar plots in
Su (1982) and Xue et al. (2001).
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Figure 5. Computed free surface elevations at t = 10T with H/L = 0.105 and ε = 0.05 along
(a) the crescent centreline y = Ly/2 and (b) y = Ly/4.

ε = 0.05 ε = 0.16

Su (1982) t/T =8 9 10 11 4 5 6 7

λ2/λ1 1.28 1.16 1.16 1.22 1.29 1.22 1.26 1.16 1.22
h11/h12 1.10 1.11 1.11 1.18 1.19 1.13 1.23 1.15 1.30
h21/h22 0.88 0.89 0.86 0.78 0.74 0.86 0.77 0.81 0.67
h11/h21 1.66 1.36 1.55 1.80 2.05 1.44 1.62 1.79 2.11

smax 0.65, 1.02 0.51 0.66 0.79 1.42 0.62 0.59 0.83 0.92

Table 2. Characteristic ratios for measured and computed phase-locked L2 crescent wave
patterns with H/L = 0.105 (at full-period intervals).

Table 2 gives a quantitative comparison of the characteristic ratios from figure 5(a)
with those reported in Su (1982) for both simulations, i.e. with ε = 0.05 and 0.16.
As we have shown, our simulations result in continually developing patterns, thus
measurements are taken at full-period intervals for comparison. As can be seen
in table 2, the results from both simulations compare well with the experimental
measurements. The computed results are similar in quality to those obtained from
the boundary-element model of Xue et al. (2001). Notable exceptions are the results
for λ2/λ1, which match the experiments better than those of Xue et al. (2001), who
attributed this to possible lower accuracy in the measurements (another possible
explanation is their use of periodic boundaries in x, which do not allow for free
adjustment of the lengths in this direction). The computed results for the maximum
slope of the water surface smax (calculated here using a centred second-order finite-
difference approximation) initially match well with the first (lower) value of smax = 0.65
given by Su (1982) (as well as those obtained in Xue et al. 2001). As the simulations
progress, the waves steepen significantly, and surface slopes closer to the second (and
significantly higher) reported value of smax = 1.02 are obtained. A precise indication
of where breaking occurs is beyond the capabilities of the present model, though we
speculate that it roughly corresponds to the point of computational breakdown. In
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general, the computed results are acceptable, and give confidence that the Boussinesq
model is capable of reproducing this deep-water highly nonlinear phenomenon
accurately.

4.4. The effects of nonlinearity

We will now use the model to demonstrate the effects of variable nonlinearity on
the general features of the phase-locked L2 class of crescent pattern. We consider
cases with H/L = 0.096, 0.111, 0.127 and 0.131. The simulation with H/L =0.096
uses ε =0.16, whereas the others use ε =0.05. Each simulation uses the spatial and
temporal discretizations from table 1, again corresponding to the most unstable
transversal class II mode for each nonlinearity according to McLean (1982). Such
a demonstration is demanding given the high wave steepness of even the incident
carrier waves, and a model with excellent nonlinear characteristics in deep water is
essential for this task.

Figure 6 shows computed free-surface elevations near the end of each simulation
(with the exception of the case with H/L = 0.096, owing to severe steepening of the
wave fronts). We mention that this point is reached very quickly with simulations
having H/L =0.127 and 0.131, after 4.2T and 3.95T , respectively. The results with
H/L = 0.096 are noticeably less defined than the others, presumably because of the
relative weakness of the instability at this nonlinearity. The rising crescent shoulders
noted in § 4.3 are again apparent in this simulation. The results with H/L =0.111 are
similar to the results in figure 3 (with H/L = 0.105). As the nonlinearity is further
increased, the dominant instability significantly increases its length in the y-direction
(as predicted by McLean 1982, and indicated in table 1), resulting in much wider
patterns with less pronounced crescent tails, as can be seen in figures 6(c) and 6(d).
The deepened trough regions in front of the crescent faces are also nearly absent
in these patterns. This may simply be due to a lack of overall development before
computational breakdown, however.

4.5. Discussion of physical processes

To provide an indication of the physical processes involved in the phase-locked L2
crescent patterns, computed Fourier amplitudes from the simulation with H/L =0.096
and ε = 0.16 are shown in figure 7. As pointed out by McLean (1982), the three-
dimensional class II instability does not become dominant until H/L ≈ 0.10. However,
the nonlinearity used here is close enough to this value to be physically relevant.
Moreover, this simulation is useful, as it does not result in a computational breakdown
within the model domain. Hence, enough data is available to perform an accurate
time series analysis, providing insight into the dominant physical processes involved.
The current simulation is stopped after 5000 time steps (i.e. 125T ). As seen in figure 7,
in addition to the primary wave and its higher (bound) harmonics (ω/ω0 = 1, 2, 3),
the figure shows very clear spikes at ω/ω0 = 0.5, 1.5, 2.5 and 3.5, with the amplitude
at ω = 1.5ω0 being by far the largest. This provides very strong evidence that the
dominant physical process for the modelled L2 crescent patterns is indeed the
established quintet resonant condition identified in Shrira et al. (1996). This condition
satisfies

k1 + k2 = 3k0, ω′
1 + ω′

2 = 3ω0, (4.2)

where k0 = 〈k0, 0〉. In the general L2 case, this corresponds to a symmetric pair of
satellites, i.e. k1 = 〈1.5k0, ky〉 and k2 = 〈1.5k0, −ky〉, with ω′

1 = ω′
2 = 1.5ω0. Additional

triad interactions between the primary wave and the ω = 1.5ω0 and 2.5ω0 harmonics,
as well as with the ω = 2.5ω0 and 3.5ω0 harmonics are also apparent. These
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(a)

(b)

(c)

(d )

Figure 6. Computed free surfaces (to scale) for phase-locked L2 crescent wave patterns
with (a) H/L = 0.096, t = 50T ; (b) H/L = 0.111, t =8.7T ; (c) H/L = 0.127, t =4.2T ; and
(d) H/L = 0.131, t = 3.95T .

interactions are of secondary importance, however, they probably become more
significant as the evolution progresses and the waves steepen. Figure 7 compares
particularly well with the spectrum given in Collard & Caulliez (1999) (also those
from Su 1982) for an experimentally observed L2 pattern, giving further confidence
in the Boussinesq model. Fourier amplitudes from other x-locations have been found
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Figure 7. Computed Fourier amplitudes from an L2 crescent wave simulation (H/L = 0.096,
ε = 0.16) from a time series at 〈x, y〉 = 〈5L,Ly/2〉 using time steps 1001–5001.
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Figure 8. Computed (a) harmonic amplitudes and (b) free surface (to scale) at t = 17.95T
from an L2 crescent wave simulation with H/L = 0.105 and ε = 0.01. The exponential curve
in (a) is given by (εH/2) exp(2.3 · 0.0316

√
gk0(x/c)).

to be very similar. Also noteworthy is the relative insignificance of the ω = 0.5ω0

subharmonic. This is consistent with triad interactions in deep water for which the
subharmonic energy transfer is less than the superharmonic transfer.

To gain further insight, figure 8 shows computed harmonic amplitudes and the
free surface at the end state from a simulation using H/L =0.105 and ε = 0.01 on a
1025 × 17 computational grid, again with the fourth-order smoothing filter. The small
value for ε probably provides a development more in line with a truly infinitesimal
disturbance. This simulation lasts for 17.95T , and the harmonic analysis uses a
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linear-least-squares fit from data covering the final 2T to give an indication of the
final evolved state. We stress that by analysing the evolution at the end of the
simulation rather than at the beginning (as was in part done in § 4.2), we are now
demonstrating the nonlinear growth into an existing wave field.

In figure 8(a), an initial exponential growth along the channel for each of the
higher harmonics is clearly demonstrated for 0 <x < 7L. The close match with the
exponential curve for the ω =1.5ω0 harmonic suggests a fully nonlinear growth rate
near the end of the simulation of roughly 2.3 times larger than that predicted by
the linear analysis of McLean (1982). This is consistent with the accelerated growth
at the later stages in figure 1. The stability analysis corresponds specifically to
infinitesimal perturbations of a plane progressive wave train, thus the deviation
presented here (involving progression into a developed wave field) may not be
altogether surprising. The development in these circumstances is equally important,
however, as it corresponds to the state most often observed in wave tank experiments.
Note that the computed growth rate of the ω = 1.5ω0 harmonic, e.g. at x =1.6L, is
0.0356

√
gk0, thus we can still confirm growth rates near the inception similar to the

theoretical value of 0.0316
√

gk0 (see table 3). Similar harmonic analyses using data
from earlier time spans have shown that the ω = 1.5ω0 harmonic gradually climbs
the exponential curve along x at a rate approximately equal to the deep-water group
velocity cg = c/2, i.e. roughly matching the curve up to x = cgt as time progresses. The
strength of the harmonic effectively levels downstream of this location. For example,
in the present simulation, this suggests a deviation from the exponential curve at
the end state at x ≈ cg17.95T ≈ 9L. As mentioned, the deviation in figure 8 begins
at x ≈ 7L, the difference being precisely the equivalent length of the time span used
in the harmonic analysis. Just after the point shown in figure 8(b) the wavefront at
x ≈ 12L steepens, and the simulation breaks down.

Figure 8 also provides an insight into the harmonic composition of the crescent
waves at various stages in their development. In figure 8(b), crescent patterns have
clearly emerged at x ≈ 7L, but they are not so well defined. For 7L < x < 12L, the
higher harmonics maintain a slowed evolution, sharpening the characteristics of the
crescent patterns. From figure 8(a), the fully nonlinear physical process is again seen
to be a complicated combination of resonant quintet interactions, with quadratic
nonlinearities forcing additional ω = 2.5ω0 and 3.5ω0 harmonics. The basic quintet
interaction results in the characteristic crescent patterns, while the higher harmonics
add definition to the observed forms. Computed Fourier amplitudes from a space
series of free-surface elevations are also shown in figure 9 along y = Ly/2. Spikes
are again apparent at k = 1.5k0, 2.5k0 and 3.5k0, clearly indicating that each of the
higher harmonics is bound to the carrier wave (i.e. each having the same celerity
ω/kx = ω0/k0).

We finally remark that there is some contention in the literature on the role of
dissipation in the formation of crescent wave patterns. Shrira et al. (1996) concluded
that, within the framework of their Hamiltonian system, it is not possible to explain
the emergence of any long-lived three-dimensional patterns. In a reappraisal of their
system, however, Craig (2001) found that three-dimensional crescent-shaped waves
indeed occur, and that these solutions are of permanent form, without the presence
of breaking or other mechanisms of dissipation. Xue et al. (2001) also argue that
crescent patterns arise naturally from nonlinear wave evolutions, which in our view
seems logical given that they are initiated by the class II instability (which assumes
no dissipation). In the present numerical study (as well as in Xue et al. 2001), we do
add light numerical smoothing to prolong our simulations in these highly nonlinear
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Figure 9. Computed Fourier amplitudes from an L2 crescent wave simulation with
H/L = 0.105, and ε =0.01 from a space series at t = 17.95T , along y = Ly/2. The analysis
uses grid points 126–925.

circumstances, therefore, one may argue that we can hardly discriminate between
conservative and dissipative cases. We have, however, also made simulations without
smoothing, which lead to essentially similar crescent patterns (albeit noisy and less
developed). Hence, we are convinced that the smoothing plays a relatively minor role
in the developments presented here (in line with § 4.2), and agree with Xue et al.
(2001) and Craig (2001) that crescent waves can indeed develop without dissipation.
In none of our simulations do they take a permanent form, however. The present
model suggests a complicated evolution of the crescent waves, consisting of three
distinct periods: (i) An initial linear growth (initiated by the class II instability),
(ii) an accelerated nonlinear growth fuelled by resonant quintet interactions, and
(iii) a breaking stage. Thus, we feel it is probably the dissipation due to breaking that
ultimately counteracts the unstable growth, resulting in waves of relatively constant
form as observed, for example, in Su et al. (1982).

5. Oscillating crescent patterns
Having examined the phase-locked crescent wave patterns, we now turn our

attention to those with an oscillating nature – where well-defined crescents no longer
propagate in a quasi-steady form, but emerge and disappear repeatedly, shifting
by a half-width in the y-direction with each successive emergence. Such oscillating
patterns have been recently observed in a wave tank in a very pure form by Collard
& Caulliez (1999). Deviations from the ‘standard’ L2 pattern were also reported in
the experiments of Melville (1982), as well as in Su et al. (1982) and Su (1982) (i.e.
the L3 and L4 patterns). In this section we investigate the long-term evolution of
crescent waveforms initiated by a double perturbation. All simulations in this section
use a 513 × 17 computational grid.

5.1. Transition from 〈kx1, kx2〉 = 〈4/3, 5/3〉k0 to 〈1, 2〉k0

For the generation of oscillating crescent waves, we first consider a simulation
using a double perturbation (both as described in § 3), with kx1 = 4k0/3, kx2 = 5k0/3,
and ky1 = ky2 = 1.32k0, superimposed over streamfunction incident waves with
H/L = 0.096. Such a perturbation initially excites quintet resonant interactions
involving the primary wave and two sets of unsymmetric satellites. Recall that the
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(a)
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Figure 10. Evolution of oscillating crescent waves (transitioning from 〈kx1, kx2〉 = 〈4/3, 5/3〉k0

to 〈1, 2〉k0) at (a) t =4.1T , (b) t = 8.8T , (c) t = 14.2T , (d) t = 30.3T , (e) t = 31.8T and
(f ) t = 33.3T . The vertical scale is multiplied by two.

perturbation in § 3 is equivalent to the superposition of two travelling components with
±ky , thus two sets of resonant conditions are indeed satisfied. For both perturbations
ε = 0.08 is used, and the corresponding frequencies are defined according to (3.6),
i.e. ω′

1 = 4ω0/3 and ω′
2 = 5ω0/3, which again assumes bound perturbations. The

perturbation wavenumbers define the initial conditions throughout the computational
domain, while the frequency perturbations are only imposed at the wavemaker. Thus,
if the two do not satisfy a naturally occurring quintet resonant interaction we can
expect a transition to occur. We wish to investigate the long-term nature of this
generation, thus we use an extended simulation run for 5000 time steps (i.e. 125T ).
The fourth-order smoothing filter is again applied at each time step.

Computed free surfaces are shown in figure 10 at six instants, which give a good
indication of the overall model development. Consistent with the observations from a
reasonably similar simulation in Xue et al. (2001) (lasting for slightly more than 4T ),
our simulations indicate that, unlike the L2 case (with kx = 1.5k0), the initial patterns
are no longer bound to the carrier waves. Rather, the individual crescents oscillate.
Figures 10(a) and 10(b) show typical free surfaces early in the simulation (at t =4.1T

and 8.8T , respectively), which compare reasonably well to figure 19 in Xue et al.
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(2001). Note that, at this point in the simulation, the pattern at the downstream
end of the domain is repeated every 3L, as specified by the initial conditions with
〈kx1, kx2〉 = 〈4/3, 5/3〉k0. By following the marked carrier wave from figure 10(a) to
10(b), it is seen that half a complete oscillation cycle takes roughly 4.7T , implying a
full oscillation period of T ∗ ≈ 9.4T . An explanation of the wavenumber and frequency
combinations involved in the oscillating patterns is provided at the end of the current
section.

Figure 10(c) shows a slightly more evolved state (at t =14.2T ), where the model
is in a transitional period, i.e. the pattern generated from the initial conditions is
indeed transitioning to one forced from the frequency disturbance at the wavemaker.
Near the wavemaker region in figure 10(c), the crescent patterns are repeated roughly
every carrier wavelength, and are beginning to oscillate in phase with one another.
Near the end of the domain, a distinct L3 pattern having the high–high–low (HHL)
structure reported in Su et al. (1982) and Su (1982) is apparent. This is the first
clear computation of such a pattern to the authors’ knowledge. We stress that this
formation occurs momentarily, and does not progress as a constant form.

As time evolves further, the initial conditions become washed out of the
computational domain, and the structured oscillations prevail throughout the
computational region, as shown in figure 10(d). At this point, the resulting patterns are
strikingly similar to the recently observed oscillating crescent patterns of Collard &
Caulliez (1999), which have a similar arrangement, and are reported to oscillate with
a period of T ∗ ≈ 3T . This resemblance could in fact be expected, as the perturbation
frequencies at the wavemaker are reasonably close to the measured values from
Collard & Caulliez (1999) of 1.36ω0 and 1.64ω0. Computed free surfaces are shown
again 1.5T later during the next clear instance of crescent formation in figure 10(e).
Here, the crescents have shifted by half a crescent width in the y-direction from the
formation in figure 10(d), in agreement with the description of Collard & Caulliez.
Finally, figure 10(f ) shows the computed free surface after another 1.5T , where the
crescents have shifted back to their original position shown in figure 10(d). This
type of oscillating pattern prevails for the remainder of the simulation. A complete
oscillation cycle as seen from figures 10(d) to 10(e) to 10(f ) is indeed T ∗ ≈ 3T – in
excellent agreement with the physical experiments.

Each crescent in the oscillating formation follows a complicated modulation pattern,
which has not been previously detailed. In an attempt to fill this gap, the modulation
of a single crescent wave is provided in figure 11, beginning at x = 5.25L and t = 33T .
Now, the initial conditions are completely washed out of the computational domain,
and the model is clearly in a repeating state of dynamic equilibrium. Figure 11(a)
begins just after the formation of a newly developed crescent, having peaks at y = 0,
Ly , and 2Ly . Notably, at this point in the evolution – where the crescent is near its
most developed state – the deepened trough regions in front of and behind the crests
are nearly absent. The waves pass through this state, very quickly, providing a good
means for a more precise estimation of the oscillation period. Soon after this state,
the crescent tails rise slightly and the crests begin to flatten, as shown in figure 11(b).
Note that here, deepened troughs are beginning to emerge following the crescent tails.
The crests continue to flatten, until becoming nearly level, as shown in figure 11(c). At
roughly this point, the troughs following the crescent tails are at their most defined
state. The crests continue to flatten until becoming nearly straight, as shown in figure
11(d). The tails then begin to push forward, fuelling small spikes emerging from the
wave crests, as shown in figure 11(e). The tails continue their collapse and the spikes
enlarge, eventually forming entirely new crescents, as seen in figure 11(f ). The trough
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(a) t = t0 = 33T

(c) t = t0 + 0.7T

(e) t = t0 + 1.4T

(g) t = t0 + 2.2T

(i) t = t0 + 3.2T

(b) t = t0 + 0.4T

(d ) t = t0 + 1.1T

( f ) t = t0 + 1.8T

(h) t = t0 + 2.7T

( j) t = t0 + 3.6T

Figure 11. The evolution of an oscillating crescent wave starting at t0 = 33T and x = 5.25L.
The vertical scale is multiplied by one and a half.

regions following the crescent tails are again nearly absent in this figure, as was the
case in figure 11(a). Note also that the crescent forms in figure 11(f ) have shifted
half a crescent width in the y-direction from the initial form seen in figure 11(a).

From the point shown in figure 11(f ), the waves follow a similar process, eventually
arriving back at a state resembling that shown in figure 11(a). This can be seen in
the evolution from figure 11(f ) to 11(j ). From figure 11, this particular cycle, in
fact, takes slightly longer than the previously mentioned 3T . Our results indicate
that this figure is closer to 3.6T , though estimates vary slightly depending on the
precise measurement location. Specifically, estimates ranging from T ∗ = 3.1T near the
left-hand side of the computational domain to the illustrated 3.6T near the right-hand
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Figure 12. Computed Fourier amplitudes based on a time series from the oscillating crescent
simulation from § 5.1 at 〈x, y〉 = 〈8L,Ly/2〉. The analysis uses time steps 1001–5001.

k1a

k0 k0 k0

k1b k2a

k2b

Figure 13. Resonant wavevector quintets for the phase-locked L2 (dashed) and the oscilla-
ting crescent (solid) patterns. A similar figure can be found in Collard & Caulliez (1999).

side have been measured (the latter is shown, as these are the most defined). These
are still similar to the estimated 3T of Collard & Caulliez (1999) (note also that they
do not specify a value for H/L).

To gain knowledge of the physical processes involved in the modelled oscillating
crescent wave patterns, computed Fourier amplitudes from a time series taken at
〈x, y〉 = 〈8L, Ly/2〉 are shown in figure 12. The analysis uses time steps 1001–
5001, when the initial conditions are completely washed out of the computational
domain. Plots from other x-positions have been found to be qualitatively similar.
After the primary wave, two significant spikes can be observed in the spectrum at
ω =1.33ω0 and 1.67ω0. As expected, these correspond precisely to the frequencies
imposed at the wavemaker region. Additional higher harmonics are also clearly
present. As the patterns at the end of the simulation are repeated roughly every
primary wavelength, the corresponding wavenumbers can be estimated as kx1 ≈ k0

and kx2 ≈ 2k0, as discussed by Collard & Caulliez. These are clearly different from
the initial conditions. The y wavenumbers can obviously be obtained from the
transversal width of the computational domain. This combination clearly satisfies the
quintet resonant condition (4.2) with two unsymmetric satellite pairs. This condition
is illustrated (for the wavenumbers) in figure 13 for both symmetric and unsymmetric
cases. For clarity, the first quintet resonant interaction involves k1a = 〈k0, ky〉 and
k2a = 〈2k0, −ky〉, whereas the second involves k1b = 〈2k0, ky〉 and k2b = 〈k0, −ky〉. The
corresponding frequencies are ω′

1a = ω′
2b =4ω0/3 and ω′

1b = ω′
2a = 5ω0/3.

The relationship between the oscillation period and the combination of satellite
frequencies and wavenumbers can be explained using simple linear superposition
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arguments. Consider a linear unidirectional carrier wave η = A cos(ω0t − k0x) subject
to the sinusoidal perturbation η′ = a cos(ω′t − kxx − kyy). In a frame of reference
moving with the carrier wave, i.e. letting x = x∗ + (ω0/k0)t and y = y∗ (where x∗ and
y∗ are the coordinates measured from this moving reference frame), the perturbation
wave reads

η′ = a cos

((
ω′

ω0

− kx

k0

)
ω0t − kxx

∗ − kyy
∗
)

. (5.1)

Hence, the oscillation period can be expressed as

T ∗

T
=

∣∣∣∣ ω′

ω0

− kx

k0

∣∣∣∣
−1

. (5.2)

Using the observed T ∗ ≈ 9.4T (from figures 10(a) and 10(b)) in combination with
the initial perturbation wavenumbers kx1 = 4k0/3 and kx2 = 5k0/3 yields estimates for
the initial satellite frequencies of ω′

1 ≈ 1.44ω0 and ω′
2 ≈ 1.56ω0. As expected, these are

entirely different from those imposed at the wavemaker. Similarly (after the transition),
using the observed T ∗ ≈ 3.1T and the known frequencies ω′

1 = 4ω0/3 and ω′
2 = 5ω0/3

yields satellite wavenumbers kx1 ≈ 1.01k0 and kx2 ≈ 1.99k0, in almost perfect agreement
with the previous estimations. These values will be reconfirmed in § 5.3.

5.2. Transition from 〈kx1, kx2〉 = 〈5/4, 7/4〉k0 to 〈3/4, 9/4〉k0

We now turn our attention to another simulation resulting in oscillating crescent
patterns which are not so distinctly arranged. This simulation uses the same model
set-up as in § 5.1 (i.e. H/L = 0.096, ε = 0.08, ky = 1.32), but with kx1 = 5k0/4 and
kx2 = 7k0/4. The perturbation frequencies at the wavemaker are again obtained from
(3.6), i.e. ω′

1 = 5ω0/4 and ω′
2 = 7ω0/4.

Figure 14 shows six computed free surfaces, which give a good account of the
overall development. The evolution of this system is initially similar to that described
in § 5.1. Figures 14(a) and 14(b) show computed free surfaces relatively early in the
simulation. Following the marked carrier wave from figures 14(a) to 14(b) reveals an
initial half-cycle of roughly 3.1T , implying an oscillation period of T ∗ ≈ 6.2T . From
(5.2), this yields initial perturbation frequencies of ω′

1 = 1.41ω0 and ω′
2 = 1.59ω0, which

will also be confirmed in § 5.3. Figure 14(c) shows the computed free surface during the
transition from the incident cycle to that imposed by the frequency disturbance at the
wavemaker. At this instant, a distinct L4 pattern is apparent, having the high–high–
low–low (HHLL) structure described by Su et al. (1982) and Su (1982). This is the first
computation of such a pattern to our knowledge. As the model continues to evolve,
the initial conditions become completely washed out of the computational domain,
and the patterns again adopt an entirely different oscillation period. Following the
marked carrier wave in figures 14(d) to 10(e) to 10(f ), a complete oscillation cycle
is now seen to be T ∗ ≈ 2T . This cycle persists for the remainder of the simulation.
Contrary to § 5.1, these oscillating crescent patterns do not become aligned in straight
rows.

To demonstrate the physical processes involved in the final evolved patterns shown
in figures 14(d)–14(f ), we first present computed Fourier amplitudes from a time
series in figures 15. This figure again clearly shows the presence of those frequencies
imposed at the wavemaker region, i.e. ω′

1 = 5ω0/4 and ω′
2 = 7ω0/4. The wavenum-

bers associated with the oscillating process in figures 14(d)–14(f ) can be estimated



A numerical study of crescent waves 329

( f )

(a)

(b)

(c)

(e)

(d )

Figure 14. Evolution of oscillating crescent waves (transitioning from 〈kx1, kx2〉 = 〈5/4, 7/4〉k0

to 〈3/4, 9/4〉k0) at (a) t = 3T , (b) t = 6.1T , (c) t = 12.2T , (d) t = 40.9T , (e) t = 41.9T and
(f ) t =42.9T . The vertical scale is multiplied by two.
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Figure 15. Computed Fourier amplitudes from the oscillating crescent wave simulation from
§ 5.2 from a time series at 〈x, y〉 = 〈7L,Ly/2〉. The analysis uses time steps 1001–5001.
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Figure 16. Computed Fourier amplitudes from an oscillating crescent wave simulation (as
shown in § 5.2, but using a second-order smoothing filter) from a space series at t =48T ,
y = Ly/2. The analysis uses grid points 101–420.

from (5.2) using the known satellite frequencies in combination with the observed
T ∗ ≈ 2T . This yields kx1 = 3k0/4 and kx2 = 9k0/4. Computed Fourier amplitudes from
a space series along y = Ly/2 are shown in figure 16 (from a similar simulation using
a second-order smoothing filter). This does not allow for a precise estimation of the
wavenumbers, however, it does clearly show spikes at roughly the estimated values,
which suffices as confirmation.

This simulation thus illustrates a general oscillating crescent wave pattern, i.e. where
the crescents do not become aligned in straight rows as seen in § 5.1. The patterns
arranged in straight rows in § 5.1 are merely a special case (visually), owing their
aligned nature to the fact that kx1 ≈ k0, and kx2 ≈ 2k0.

5.3. A quantitative explanation

We now pose the question, ‘Is it possible to predict the oscillation period given only
a set of perturbation wavenumbers satisfying the quintet resonant condition?’ Such a
method for quantitatively explaining the oscillating crescent waveforms has not been
previously presented to our knowledge. The explanation essentially requires a means
for estimating the satellite frequencies corresponding to the unstable perturbation
wavenumbers, i.e. a dispersion relation of sorts. Note that Collard & Caulliez (1999)
use the linear dispersion as a rough estimate. We find that such estimates are
indeed very rough, and are not useful in providing accurate quantitative estimations.
The required information is embedded in the stability analysis of McLean (1982).
Unfortunately, his analysis concentrates primarily on the dominant class II instability
(resulting in the phase-locked L2 patterns), giving little quantitative information for
those interactions involving unsymmetric satellite pairs.

We therefore undertake a similar analysis, analysing numerically the stability of
deep-water carrier waves generated from the streamfunction solution of Fenton (1988)
to infinitesimal periodic disturbances resolved on an equidistant spatial grid. To allow
for direct comparison with the values of McLean (1982) (who used g = 1 m s−2 and
k0 = 1 m−1) we present eigenvalues σ which are non-dimensionalized with respect
to

√
gk0. The analyses use up to 30 Fourier modes for the streamfunction solution,

with the resulting wave discretized with up to 60 equidistant points in space for
the corresponding stability analysis. The result is a generalized eigenvalue problem
(see McLean 1982, for details). In the present analysis, this is first converted to
a standard eigenvalue problem before solving. Specific attention is paid to those
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Class I Class II

H/L p q σ McLean (1982) p q σ McLean (1982)

0.032 0.18 0 −0.088+0.00412i −0.086+0.00409i 0.5 1.64 0+ 0.00059i 0+ 0.0006i
0.064 0.32 0 −0.146+0.0134i −0.146+0.0133i 0.5 1.54 0+ 0.00531i 0+ 0.00523i
0.095 0.47 0 −0.189+0.0225i −0.189+0.0226i 0.5 1.33 0+ 0.0210i 0+ 0.0215i
0.096 0.47 0 −0.188+0.0227i — 0.5 1.32 0+ 0.0219i —
0.105 0.54 0 −0.204+0.0236i — 0.5 1.23 0+ 0.0316i —
0.111 0.60 0 −0.215+0.0228i −0.214+0.0227i 0.5 1.15 0+ 0.0406i 0+ 0.0413i
0.127 0.84 0 −0.229+0.0119i Stable 0.5 0.79 0+ 0.0875i 0+ 0.0888i
0.131 0.90 0 −0.206+0.0073i Stable 0.5 0.65 0+ 0.11i 0+ 0.11i
0.131 — — — — 0.5 0 0+ 0.079i 0+ 0.067i

Table 3. Computed unstable class I and II eigenvalues having maximum imaginary part.
Also shown for comparison are those from McLean (1982).

§ H/L p q σ T ∗/T ω′
1/ω0 ω′

2/ω0

5.1 0.096 0.667 1.32 −0.111+0.0213i 9.37 1.56 1.44
5.1 0.096 1.0 1.32 −0.335+0.0171i 3.10 1.68 1.32
5.2 0.096 0.75 1.32 −0.166+0.0205i 6.26 1.59 1.41
5.2 0.096 1.25 1.32 −0.509+0.0117i 2.04 1.76 1.24

Table 4. Computed unstable class II eigenvalues corresponding to the modelled oscillating
crescent wave patterns.

eigenvalues with non-zero imaginary part as these correspond to exponential growth
of the unstable modes. The imaginary part determines the growth rate of the initial
disturbance, while the real part corresponds to the frequency of the perturbation as
seen from a moving frame of reference travelling with the unperturbed wave. A purely
imaginary eigenvalue thus indicates an exponentially growing perturbation bound to
the carrier wave, as in the general L2 case. Note that in this analysis the perturbation
wavenumbers correspond to k1 = 〈p + 1, q〉k0 and k2 = 〈1 − p, −q〉k0 for the class I
instabilities, and k1 = 〈p + 1, q〉k0 and k2 = 〈2 − p, −q〉k0 for the class II instabilities.

Computed eigenvalues for the most unstable class I and II instabilities are shown
in table 3, as are those from McLean (1982) for comparison. As can be seen, the two
analyses generally compare well with one another, giving confidence in the computed
values. In contrast to McLean (1982), however, we detect class I instabilities for
H/L � 0.127. This is consistent with the analysis of Kharif & Ramamonjiarisoa
(1986, 1990), who found that the class I instability is not stabilized until H/L > 0.137.
For H/L < 0.127, the values shown are converged to at least the three digits shown,
while for the higher nonlinearities the convergence becomes somewhat more erratic.

Table 4 shows computed eigenvalues corresponding to the initial and final stages
of the two oscillating crescent wave simulations in § § 5.1 and 5.2. As the real part
of σ is non-zero in these cases, the corresponding perturbations will no longer be
bound as in the L2 case, explaining the oscillatory nature of the patterns. This
information can thus be used to provide an estimate for the oscillation period. Recall
that the eigenvalues are non-dimensional, and must thus be multiplied by

√
gk0 to

gain physical relevance for the present simulations. The resulting oscillating period
can hence be estimated as

T ∗

T0

=
ω0√

gk0|Re{σ}|
. (5.3)
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These values are also given in table 4. In each case, the predicted oscillation period
matches extremely well with the numerical simulations. In particular, we note that the
case with p =1.0 predicts T ∗ = 3.10T , which is very close to the estimation of 3T given
by Collard & Caulliez (1999). The prediction is also in essentially perfect agreement
with the estimate from the model of 3.1T occurring nearest to the wavemaker (i.e.
before the perturbations reach significant amplitude). The frequencies corres-
ponding to the perturbation wavenumbers can be obtained from

ω′
1

ω0

=
kx1

k0

+

√
gk0Re{σ}

ω0

,
ω′

2

ω0

=
kx2

k0

−
√

gk0Re{σ}
ω0

. (5.4)

These values are also given in table 4. The cases having H/L =0.096 with p = 1.0
and p =1.25 result in perturbation frequencies very close to those imposed at the
wavemaker regions in § § 5.1 and 5.2, respectively. The other values (with p = 0.667
and 0.75) also confirm the predicted frequencies using (5.2) in § § 5.1 and 5.2. This
analysis has proved to be a very useful means for quantitatively explaining the
modelled oscillating crescent wave patterns.

A simulation using H/L =0.096, kx1 = 2k0 and kx2 = k0 with ω′
1 = 1.68ω0 and

ω′
2 = 1.32ω0 (as suggested in table 4) results in the development of oscillating crescent

patterns aligned in straight rows from the very beginning of the simulation, which
then persist indefinitely (within the computational domain). The resulting patterns
are essentially the same as those in figures 10(d)–10(f ), thus they are not shown here.
This simulation further confirms the accuracy of the stability analysis in quantitatively
explaining these oscillating crescent wave patterns.

5.4. On the selection of the Collard & Caulliez (1999) oscillating crescents

While the previous subsection provides a quantitative explanation of the physics
involved in the oscillating crescent wave phenomenon, it does not explain the selection
of the specific unsymmetric satellite pair observed in the experiments of Collard &
Caulliez (1999), again resulting in the striking alignment of the crescents in straight
rows. In the following, we propose that the selection of the observed satellites could
in part be an artefact of the tank width, combined with a possible suppression of the
class I instability.

Collard & Caulliez (1999) demonstrate their oscillating crescent waves at a carrier
frequency f = 1.3 Hz (T =1/f = 0.769 s, ω0 = 8.17 s−1) in a tank with depth h =0.9 m
and width w = 2.6 m. They report an estimated value of q = |ky/k0| =1.32, but
they do not provide the specific waveheight in the experiment. In an attempt to
explain their observations we choose the waveheight of the carrier wave to be
H = 0.0682 m. A streamfunction solution then yields the wavelength L =0.963 m
(H/L = 0.0708, k0 = 6.52 m−1, k0h =5.87). Because of the tank width, we will assume
that the transversal wavenumbers are limited to the discrete possibilities

|ky | =
πn

w
, (5.5)

where n is an integer specifying the number of half transverse wavelengths spanning
the width of the tank. Of these, we consider n= 7 and 8, giving |ky | = 8.46 m−1,
q = |ky/k0| =1.30, and |ky | =9.67 m−1, q = |ky/k0| = 1.48, respectively, which are
the values closest to the reported q = 1.32. Using the stability analysis from § 5.3,
setting 〈p, q〉 = 〈1, 1.30〉 does not result in an instability. Alternatively, setting
〈p, q〉 = 〈1, 1.48〉, yields the unstable eigenvalue σ = −0.363 + 0.00587i, which is,
in fact, the dominant class II instability, again provided that q is limited to the
discrete values. This results in an oscillating period from (5.3) of T ∗ = 2.82T , and
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perturbation frequencies from (5.4) of ω′
1 = 1.64ω0 and ω′

2 = 1.36ω0, which are in
very good agreement with the values T ∗ =3T , ω′

1 = 1.64ω0, and ω′
2 = 1.36ω0 from the

experiments. At this nonlinearity, a symmetric class II instability (i.e. with p = 0.5)
does exist, but is not dominant (setting 〈p, q〉 = 〈0.5, 1.48〉 yields σ = 0.00433i). Hence,
for a small range of parameters (again considering discrete q), it is possible for the
dominant class II instability to result in oscillating crescent patterns similar to those
observed in the experiments, which may help explain their selection. Although we
have not been able to explain the emergence of oscillating patterns with exactly the
same combination of parameters as reported by Collard & Caulliez (1999)(q = 1.48
versus q = 1.32), the values are reasonably close. We find it particularly encouraging
that the perturbation frequencies match so closely with the experiments.

This does not, however, account for the lack of the class I instability in the
experiments. At this nonlinearity, the dominant class I instability corresponds
to 〈p, q〉 = 〈0.35, 0〉, with σ = −0.157 + 0.0156i, which is clearly stronger than the
previously mentioned class II mode. It therefore seems that the class I instability may
somehow be suppressed in the experiments (or alternatively, the class II instability
artificially excited). The most obvious explanation for such a suppression is the use of
a plastic film on the water surface. Collard & Caulliez (1999) indeed report that, in
addition to preventing wave breaking, the film damps longitudinal wave modulations
(also that it is used to ‘isolate the three-dimensional wave pattern formation’). Bliven,
Huang & Long (1986) also provide experimental evidence that the class I instability
is suppressed by wind, which was also used in the experiments. As evidence of
such a suppression, whatever the cause, we note that Collard & Caulliez (1999)
report observing phase-locked L2 crescent patterns for waves exceeding a critical
steepness H/L =0.16/π ≈ 0.051, far below where the class II instability is theoretically
dominant. It is not clear why such a plastic film and/or the wind would suppress the
class I modes more than their class II counterparts, though the experimental results
seem to support this contention.

While this explanation is inevitably speculative, we do demonstrate a plausible
scenario where class II instabilities resulting in oscillating crescent patterns similar to
those observed in the experiments of Collard & Caulliez (1999) would indeed be likely
to appear, while still working within the framework of existing theories. Additional
experiments to gain a better understanding of the effects of the plastic film, as well as
the wind, are probably necessary for a more complete understanding of the selection
mechanism in the experiments.

6. Competition between unstable modes
We now investigate the initial competition up to the breaking point between various

resonant interactions. Each simulation in this section uses the fourth-order smoothing
filter applied at each time step, to have a minimal effect on the growth of the respective
modes. Each simulation is run to the point of breakdown due to steepening of one
or more wavefronts caused by the resulting instabilities. All harmonic analyses in this
section use data from the final 4T , to give an indication of the final evolved state.

6.1. Competition between isolated class II modes

We first investigate the direct competition between the dominant (symmetric) class
II modes (§ 4) with the unsymmetric satellites (§ 5). We consider a simulation with
carrier waves having H/L =0.096 on a 1025 × 17 computational grid. The simulation
uses a double perturbation with kx1 = 1.5k0, ω

′
1 = 1.5ω0 and kx2 = k0, ω

′
2 = 1.32ω0. Both
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Figure 17. Computed (a) harmonic amplitudes and (b) free surface at t =24.4T for
the simulation involving competition between symmetric (phase-locked) and unsymmetric
(oscillating) class II instabilities with H/L = 0.096. In (b), the vertical scale is multiplied by
two.

perturbations use ky = 1.32k0 and ε =0.01. Note that the second perturbation excites
only one mode from each of the (oscillating) unsymmetric pairs (the others, i.e. with
kx = 2k0 and ω′ = 1.68ω0, are free to evolve via the resonant quintet interactions).
Both processes are excited with equivalent strength, however, and, in the absence of
the other perturbation, simulations have shown that they develop to the expected
patterns.

Figure 17(a) shows harmonic amplitudes corresponding to the various frequencies
involved in the quintet resonant interactions. Clearly, both of the instabilities exhibit
an initial growth, and as the strengths of the instabilities are nearly equivalent (see
tables 3 and 4), neither dominates the other. Figure 17(b) shows the computed
free surface at the end of the simulation involving the competing modes, where
both instabilities are apparent. The overall pattern resembles the L2 pattern of
§ 4, however, clear deviations are noticeable at every other wavefront. Recall that
the resonant interaction with the unsymmetric pairs results in oscillating crescents
aligned in straight rows. These in turn cause an oscillating increase and decrease
in the steepness of successive wave fronts – the L2 waves having the same
momentary arrangement are steepened, while those having the opposite arrangement
are diminished. This experiment demonstrates that multiple class II instabilities
can develop simultaneously, with both contributing to the eventual breaking of the
crescent waves. This is consistent with the findings of Annenkov & Shrira (1999,
2001), who also show the initial development of multiple class II instabilities.

6.2. Competition between isolated class I and II modes

We now use the model to investigate competition between isolated dominant class
I and II instabilities. Three simulations are considered with incident waves having
H/L =0.064, 0.095 and 0.111. For each simulation, the dominant high-frequency
component for both class I and II instabilities (see table 3) is excited with strength ε.
The class II perturbations use the ky values from table 1, while the class I perturbations
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Figure 18. Computed harmonic amplitudes along y = Ly/2 for simulations with competing
class I and II instabilities for (a) H/L = 0.064, (b) H/L = 0.095 and (c) H/L = 0.111.

use ky = 0. The case with H/L = 0.064 uses ε = 0.05, while the other two simulations
use ε = 0.01, all on a 1025 × 17 computational grid. The simulations with H/L =0.064,
0.095 and 0.111 last for roughly 45T , 21.25T and 13T , respectively.

Figure 18 shows harmonic amplitudes along y =Ly/2 for the dominant frequencies
involved in both the class I (quartet) and II (quintet) resonant interactions, while
figure 19 shows computed free surfaces near the final state of each simulation.
Figure 18(a) shows the case with H/L =0.064, where the class I instability clearly
dominates the class II instability, consistent with the expectation from the stability
analysis of McLean (1982) (as well as our own analysis). In this case, the dominant
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(b)
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(a)

Figure 19. Computed free surfaces near the end state for simulations with competing class
I and II instabilities for (a) H/L = 0.064 at t = 43.75T , (b) H/L = 0.095 at t = 21.25T and
(c) H/L = 0.111 at t =13T . The vertical scale is multiplied by two.

lower class I sideband grows to roughly the same strength as the primary wave
before eventually leading to breaking. Although the class II mode develops, it never
reaches the considerable amplitudes of the class I modes. The free surface near the
final model state is shown in figure 19(a), where the observed instability is only
slightly three-dimensional. From table 3, this class I instability involves wavenumbers
kx1 = 1.32k0 and kx2 = 0.68k0. Using simple superposition arguments, we can expect
that the pattern will repeat itself with a length of ≈3L, which matches that seen in
figure 19(a) (upon close examination roughly every third wave near the end of the
domain is steepened).

The case with H/L =0.095 is noticeably different. From table 3, the strength of the
class I and II instabilities is similar at this nonlinearity. From the harmonic analysis
in figure 18(b), it is seen that both instabilities grow in strength to roughly equivalent
magnitudes. As might be expected, neither process dominates the other. The resulting
free surface is shown in figure 19(b), where both two- and three-dimensional effects
are apparent. The three-dimensional class II instability is instantly recognizable from
the crescent forms. The two-dimensional class I instability can be distinguished,
as it steepens roughly every other wavefront near the end of the domain. This is
again consistent with the expectations from the wavenumbers involved, kx1 = 1.47k0,
kx2 = 0.53k0.

The case with H/L = 0.111 demonstrates relative dominance of the class II
instability. The peak class I harmonic amplitudes shown in figure 18(c) are significantly
lower than those of the class II mode, though they, too, develop. The computed free
surface at the end of the simulation is shown in figure 19(c), where the resulting
pattern is predominantly three-dimensional in nature, closely resembling the previous
plot in figure 6(b) having the same nonlinearity. Minor two-dimensional effects are
also apparent, steepening roughly every other wavefront near the end of the domain.
These are of secondary importance, and are noticeably less pronounced than in
figure 19(b).

6.3. Competition of random disturbances

All of the previously modelled crescent patterns have been generated using very
deliberate two- and three-dimensional perturbations, as described in § 3. These have
proved to be a very efficient means for generating isolated instabilities, however, it is
perhaps not very representative of natural (or even laboratory) conditions resulting
in such patterns. In this section, we therefore consider the nonlinear evolution of
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Figure 20. Computed wave patterns generated from simulations with random disturbances
(ε =0.02) with (a) H/L = 0.095, t = 34T , (b) H/L = 0.111, t = 23.75T , and (c) H/L = 0.127,
t =15.75T . The vertical scale is multiplied by two.

randomly perturbed plane incident waves. Hence, the incident streamfunction solution
values for the time stepping variables η, Ũ and Ṽ are multiplied individually at each
grid point by a factor (1 + εµ), where µ is a uniformly distributed random number
between −1 and 1. We consider simulations using three nonlinearities H/L = 0.095,
0.111 and 0.127. Each simulation uses a 1025 × 33 computational grid (i.e. a full
wavelength of the dominant transversal class II mode), with ε = 0.02. Discretizations
are again taken from table 1.

Computed free surfaces near the end of each simulation are shown in figure 20.
Figure 20(a) shows the case with H/L =0.095, which demonstrates a predominantly
two-dimensional instability near the end of the computational domain. Minor three-
dimensional effects are also apparent. Note that the class I instability does have a
slightly larger linear growth rate than the corresponding class II instability at this
nonlinearity (see McLean 1982, as well as table 3). The resulting free surface is
much less three-dimensional than in figure 19(b) having the same nonlinearity. This
could suggest that that the class II instability is suppressed more by the randomness
than is the class I instability, at least at this nonlinearity (the suppression of the
class I instability by randomness is demonstrated in Alber 1978). A more in-depth
investigation would be necessary before making any firm conclusions on this matter,
however.

Figure 20(b) shows the case with H/L =0.111, which results in a predominantly
three-dimensional steepening of the wave, again consistent with expectations from
table 3. Both Su et al. (1982) and Melville (1982) report dominance of the three-
dimensional instability at H/L ≈ 0.10, thus, this is consistent with their observations.
Two-dimensional effects are also clearly present, as every other wavefront around
the crescent is slightly steepened. We also note that the emergence of the crescent at
x ≈ 15L compares well with the observations of Melville (1982), who reports strong
three-dimensional effects at x ≈ 10L, as well as with Su et al. (1982), who report a
first stage of wave evolution of x ≈ 19L (both with H/L ≈ 0.10). We speculate that
a continued evolution of the model beyond the breaking point might lead to clearer
dominance of the class II instability at this nonlinearity.

Figure 20(c) shows the case with H/L = 0.127. Here, multiple L2-like patterns
emerge starting at x ≈ 7L. There is no noticeable indication of two-dimensional
instabilities. We also call attention to the series of wavefronts starting at x ≈ 15L in
figure 20(c), with successive fronts having minor peaks at y =0, Ly and 2Ly . Such
an arrangement deviates from the standard L2 pattern, and may be the beginnings
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Preconditioning E × 107

Simulation § H/L ε Ns Nt method Iterations CPU [h] [h]

L2 4.5 0.096 0.16 8721 5000 Fourier 12.7 4.45 1.02
L2 4.3 0.105 0.16 8721 310 Fourier 12.4 0.32 1.18
L2 4.3 0.105 0.16 8721 260 Schur 21.9 0.63 2.78
L2 4.5 0.105 0.01 17,425 720 Fourier 7.9 1.13 0.90
L2 4.5 0.105 0.01 17,425 720 Schur 16.9 3.03 2.42
L2 4.5 0.131 0.05 8721 160 Fourier 14.2 0.20 1.43

Oscillating 5.1 0.096 2 × 0.08 8721 5000 Fourier 12.6 4.39 1.01
Oscillating 5.2 0.096 2 × 0.08 8721 5000 Fourier 12.0 4.30 0.99
Competition 6.2 0.064 2 × 0.05 17,425 1800 Fourier 8.1 2.65 0.84
Competition 6.2 0.111 2 × 0.01 17,425 530 Fourier 8.5 0.94 1.02
Competition 6.3 0.095 0.02 33,825 1370 Fourier 7.3 3.66 0.79
Competition 6.3 0.111 0.02 33,825 970 Fourier 8.4 2.89 0.88
Competition 6.3 0.111 0.02 33,825 970 Schur 17.9 8.99 2.74
Competition 6.3 0.127 0.02 33,825 640 Fourier 10.3 2.41 1.11
Competition 6.3 0.127 0.02 33,825 640 Schur 22.4 7.77 3.59

Table 5. Computational summary of selected crescent wave simulations. The reported
iterations are the average in each simulation for solutions of Ax = b.

of potential L3- or L4-like patterns, as observed in Su et al. (1982) and Su (1982)
(Melville 1982, also reports such deviations).

We finally mention a number of experiments involving the competition of various
modes in Annenkov & Shrira (1999, 2001) using a weakly nonlinear model based
on the Zakharov equation. Their experiments demonstrate sporadically occurring
crescent patterns, occurring over long-term (i.e. O(1000T )) evolutions, whereas the
experiments described here consider only the initial development to breaking, at
significantly higher nonlinearities. Nevertheless, the experiments share some common
tendencies. The results of Annenkov & Shrira (1999, 2001) also indicate the initial
growth of multiple instabilities (as mentioned in § 6.1), as well as a tendency for
significantly stronger modes to exhibit dominance over weaker instabilities. The vast
difference in both time scales and nonlinearity make a more meaningful comparison
difficult, however. The onset of breaking in each of the experiments presented here
will most probably change the long-term evolution of the waves dramatically, making
such sporadic patterns unlikely at the nonlinearities where the class II instability is
dominant. For example, Su et al. (1982) report observing spilling crescent breakers
for roughly 10L, after which the wavetrains return to a more or less two-dimensional
form. This process is later followed by a frequency downshift in the spectrum. The
long-term fully nonlinear evolution of crescent waves remains relatively unstudied.

7. Computational efficiency
In this section, the issue of computational efficiency is briefly addressed. All

previously described simulations have been run on a single Pentium 4 2.26 GHz
processor with 1 GB of 266 MHz DDR-RAM. A summary of computational results
for selected simulations is given in table 5. Here, Ns refers to the number of spatial
grid points, Nt is the number of time steps, and

E =
CPU

NsNt

(7.1)
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is a measure of relative computational expense in terms of CPU time per grid
point per time step (allowing for easy comparison of the various simulations). From
this table it can be seen that the numerical solutions for Ax = b (which are the
dominant computational expense) in the Boussinesq model are robust, even in
the most nonlinear situations. Modelling crescent waves is, in fact, demanding, as
simulations are inevitably in deep water, require fairly refined grids, and are highly
nonlinear – all factors contributing to the ill-conditioning of the matrix A. Recall
that the matrix-free Fourier space preconditioning method is limited to solving flat-
bottom problems, owing to the assumption of constant coefficients in Fourier space.
Therefore, some results using the generally applicable approximate Schur complement
preconditioner developed in Fuhrman & Bingham (2004) are also included. These
solutions can be seen to be somewhat less efficient (roughly by a factor of 3), but
are still very acceptable. Solutions for the Boussinesq model have been shown by
Fuhrman & Bingham (2004) to scale roughly linearly with Ns , which is generally
confirmed through these simulations. The present Boussinesq model has proved to
be an efficient method for the study of highly nonlinear water waves at reasonably
large space and time scales – the simulations presented here take hours, not days, on
a modern processor. This efficiency has allowed for a quantitative study of crescent
wave patterns at significantly larger spatial and temporal scales than have been
previously presented.

8. Conclusions
This paper presents a detailed numerical study of crescent (or horseshoe) water

wave patterns using the fully nonlinear and highly dispersive Boussinesq formulation
of Madsen et al. (2002, 2003). The numerical model uses the efficient solution strategies
developed in Fuhrman & Bingham (2004). Herein, it is shown that the computed
results for the most unstable phase-locked L2 crescent wave patterns compare both
qualitatively and quantitatively well with observations, giving confidence in the model.
The growth rate of the instability is shown to match closely with that predicted by the
linear analysis of McLean (1982) near the inception. At later stages of the evolution,
however, the growth is significantly accelerated when uninhibited by dissipation. The
model results suggest that it is the dissipative effects due to wave breaking that
ultimately counteract the unstable growth, leading to the relatively steady forms
described in physical experiments. We also use the model to investigate the effects
of variable nonlinearity on these patterns. We demonstrate that increases in the
nonlinearity generally result in wider crescent patterns (as predicted by McLean
1982) with less pronounced tails. Through Fourier analysis of both time and space
series, we confirm the quintet resonant interaction as the dominant physical process,
involving the primary wave with a pair of symmetric satellites. A series of quadratic
nonlinearities also force additional bound higher harmonics, giving definition to the
crescent forms.

A numerical investigation of oscillating crescent waves, observed by Collard &
Caulliez (1999), is also presented. The computed results provide a close match with
the oscillation period observed in the physical experiments, and a detailed account of
the complicated oscillation cycle is presented. Through direct numerical simulation,
we also demonstrate distinct occurrences of L3 and L4 crescent patterns observed
by Su et al. (1982) and Su (1982). These occur momentarily when the model is
transitioning between various resonant interactions. The dominant physical processes
in the oscillating crescent patterns are again demonstrated to be resonant quintet
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interactions, involving the primary wave with two unsymmetric satellite pairs. The
arrangement of the patterns in straight rows as observed by Collard & Caulliez (1999)
is further shown to be merely a special case (visually) of these oscillating crescent
waves, which, in general, do not have such an arrangement. A re-investigation into
the stability analysis of McLean (1982) is undertaken, resulting in a quantitative
explanation (including accurate predictions of the oscillation period) for each of the
cases considered. A possible explanation of the selection of the oscillating patterns
observed in the experiments is also provided.

Finally, the model is used to conduct a series of numerical experiments involving
the competition of various unstable modes during the initial growth toward wave
breaking. These include competition between isolated class II modes, between isolated
class I and II modes, as well as with random (white noise) disturbances. The results
show that multiple instabilities can grow simultaneously, provided that they are of
similar strength, with each contributing to the eventual breaking of the waves. The
computed results involving the random disturbances compare well with observations
in wave tank experiments both in the form (i.e. two- or three-dimensional) and
location of the initial instability. Deviations from the dominant L2 pattern also arise
naturally, consistent with observations.

The computations presented in this work are the first examples of deep-water
highly nonlinear (to the point of breaking) three-dimensional wave modelling with
a high-order Boussinesq model. The model is generally applicable to variable-depth
problems, and is shown to be an efficient computational method for the general study
of highly nonlinear water waves at reasonably large space and time scales.

We would like to express our thanks to reviewers of this paper for their useful
comments and suggestions. These have specifically inspired us to write § 5.4, correct
table 3, and provide additional discussion on the role of dissipation in § 4.5. We
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supercomputing resources. This work was financially supported by the Danish
Technical Research Council (STVF grant no. 9801635). Their support is greatly
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